

Journal Name: IEEE Transactions on Intelligent Transportation Systems

IF: 8.4

Title: Guest Editorial Recent Advances in Safety and Reliability for Transportation Cyber-

**Physical Systems** 

Author: Chakraborty, C.; Huang, C.; Nguyen, A.-T.; Song, H.H.

Details: Vol. 26, Issue 9, September 2025

**Abstract:** CYBER-PHYSICAL systems is an exciting, growing research field with the benefits of efficiency and flexibility improvement, safety monitoring, and control enhancement, and has attracted the attention of many researchers. Cyber-physical systems have propelled

transportation system innovation and formed a transportation cyber-physical system (T-CPS). TCPS aims to merge the 3C technologies of computing, communication, and control, integrate transportation information elements with transportation physical elements, and leverage the advantages of information technology in perception, transmission, and optimization control. However, this also imposes safety, reliability, security, and trust challenges, which highlights the need to develop novel methodologies to address these challenges. T-



CPS is helpful to increase the efficiency, controllability, and reliability of a physical system, i.e., vehicle collision avoidance. There are various transportation-based components that interconnect and process with the cyber world to improve safety, security, and comfort. A newage T-CPS already provides unprecedented opportunities and exemplary results that were not possible with legacy transportation systems. This continuous and exponential growth is facilitated by investments and research activities originating from industry, academia, and governments, while the penetration of these technologies is also driven by the high technology acceptance rates of both consumers and technologists across disciplines.

**URL:** https://www.scopus.com/pages/publications/105017691897?inward





#### **Journal Name: Engineering Applications of Artificial Intelligence**

IF: 8.0

**Title:** Malicious detection and trust calculation using residual recurrent neural network for trust with quality of service-aware multicast routing in mobile ad-hoc network system

**Author:** S.K., Sarangi, Sanjaya Kumar; R., Lenka, Rasmita; J., Mishra, Janmejaya; R., Sahu, R.; A., Nanda, Arabinda

Details: Vol. 161, December 2025

**Abstract:** A Mobile Ad-hoc Network is a collection of mobile nodes without any proper infrastructure. In this work, a novel trust and Quality of Service-aware multicast routing technique for Mobile Ad-hoc Network is introduced. The key scope of this research paper is to

evaluate the trust with Quality of Service -aware multicast routing process in Mobile Ad-hoc Network by detecting malicious nodes. For performing the optimal routing without any suspicious attacks initially the malicious node detection is performed by Residual Recurrent Neural Network. Further, if the Mobile Ad-hoc Network model is normal and free from malicious nodes, then the true value is calculated by utilizing the outcome of malicious node detection. If the node is free from malicious then, the trust value becomes high or else the trust value becomes low. Once, the



trust calculation is completed the optimal routing is performed in the Mobile Ad-hoc Network with the support of the Enhanced Artificial Rabbits Optimization algorithm. Moreover, different constraints like hop count, throughput, Packet Delivery Ratio, delay, and energy consumption are derived. Further, different experiments are evaluated to prove the effectiveness of the implemented model against several baseline techniques. Hence, the developed model accomplishes superior efficiency in detecting the malicious and performs the multicast routing in the Mobile Ad-hoc Network.

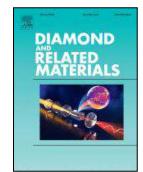
URL: https://www.sciencedirect.com/science/article/pii/S0952197625021384?via%3Dihub





**Journal Name: Diamond and Related Materials** 

IF: 5.1


**Title:** Comprehensive sensing framework for sugar molecules based on graphene absorber: Coupled mode theory, transmission line analysis, and deep learning integration

Author: Khatami, S.A.; Rezaei, P.; Zamzam, P.; Hadipour, S.; Bhargav, B.

Details: Vol. 159, November 2025

**Abstract:** Metamaterial absorbers and their application in the terahertz spectrum, such as sensing, imaging, etc., are popular issues worldwide that draw the attention of engineers and researchers. This paper introduces a reconfigurable terahertz metamaterial absorber for

detection applications. A few features of the design are its high sensitivity and polarization insensitivity in various refractive indexes of surrounding media, making it an excellent candidate for sensing applications. The design comprises three layers, Gold, SiO<sub>2</sub>, and graphene, respectively, absorb the incident transmitted wave at 5.944 THz, with an excellent absorption of 99.98 % and a Q-factor of 17.69. This sensor was used to detect sugar molecules and find their application in industry and medicine. A deep learning framework is integrated with the absorber to further



improve their detection. A large spectral dataset of 1260 samples, generated through simulations that account for variations in sample thickness, polarization, and incidence angles, is used to train a deep neural network. The model achieves a training accuracy of 98 %, a validation accuracy of 94.6 %, and a test accuracy of 95.24 % on 126 unknown samples, with only six misclassifications. These results demonstrate the effectiveness of combining terahertz metamaterial absorbers with deep learning techniques for accurate, robust identification of sugar molecules, making the system highly suitable for advanced biomedical sensing applications.

URL: https://www.sciencedirect.com/science/article/pii/S0925963525009914?via%3Dihub





**Journal Name: Biomedical Signal Processing and Control** 

IF: 4.9

**Title**: Preprocessing and frame level classification framework for cardiac phase detection in 2D echocardiography

Author: Singh G.; Darji A.D.; Sarvaiya J.N.; Patnaik S.

Details: Volume 107, September 2025

**Abstract:** Accurate detection of end-diastole (ED) and end-systole (ES) frames is a crucial step in cardiac function analysis, enabling precise measurement of ventricular volume, ejection fraction (EF), and stroke volume (SV). However, this task is challenging due to variations in cardiac structure, heart rate fluctuations associated with clinical conditions, and the low-resolution nature of echocardiographic sequences. This study addresses these challenges by introducing three preprocessing steps — noise reduction via heart rate formulation, video frame synchronization, and non-oscillating mean absolute

frame difference — to denoise and enhance the EchoNet-Dynamic dataset. Additionally, the echo phase detection problem is reformulated as a frame-level binary classification task to mitigate class imbalance between diastole and systole phases. The proposed architecture employs a time-distributed convolutional neural network (CNN) to extract spatial features, followed by a bidirectional long short-term memory (BiLSTM) network to capture temporal dynamics, and a classification layer



for phase prediction. The model achieves an average absolute frame distance of 1.02 and 1.04 frames for ED and ES frames, respectively, on the preprocessed EchoNet-Dynamic dataset. To ensure better generalization, the model was also validated on the CAMUS dataset and private data, where it demonstrated consistent performance and robust results. These findings significantly enhance the reliability of cardiac metrics, offering clinicians a precise and efficient tool for echocardiographic analysis.

URL: https://www.sciencedirect.com/science/article/pii/S1746809425003143?via%3Dihub

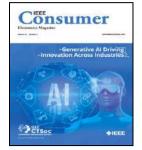




Journal Name: IEEE Consumer Electronics Magazine

IF: 4.1

**Title:** GenAl Role in Consumer Devices and Services


Author: C., Chakraborty, Chinmay; H., Moustafa, Hassnaa; S., Yin, Shen; A., Mehrabi, Ali; R.,

Sotelo, Rafael

**Details:** Volume, 14 Issues 5, September 2025

**Abstract:** Generative artificial intelligence (GenAI) is increasingly being integrated into consumer electronics devices and services to enhance personalization and recommendations. It enables tailored user experiences through AI-driven content generation, intelligent suggestions, and seamless service delivery. It is introducing cutting-edge features like seamless interaction

with the devices, the introduction of new use cases, and predictive maintenance and automated device optimization. Al/GenAl can also enhance security, privacy, and verification of the goodness of Al for consumer devices by using behavior analysis, anomaly detection, biometric authentication, data encryption, and threat detection. By combining Al/GenAl technologies, security and privacy measures on consumer devices can be significantly improved, offering users a safer



digital experience. Al automates device provisioning, monitoring, and maintenance tasks, ensuring that devices operate efficiently and effectively. It also analyzes user data to optimize device performance, personalize user experiences, and improve energy efficiency. This special issue involves understanding the underlying features of the input data and creating outputs that mimic these patterns, enabling the generation of novel data points that align with the original dataset's characteristics.

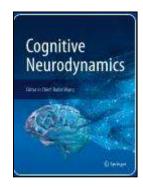
**URL**: https://ieeexplore.ieee.org/document/11154657





**Journal Name: Cognitive Neurodynamics** 

IF: 3.9


**Title**: Convolutional autoencoder-based deep learning for intracerebral hemorrhage classification using brain CT images

Author: Nageswara Rao B.; Acharya U.R.; Tan R.-S.; Dash P.; Mohapatra M.; Sabut S.

**Details:** Volume 19, Issue 1, December 2025, Article number 77

**Abstract:** Intracerebral haemorrhage (ICH) is a common form of stroke that affects millions of people worldwide. The incidence is associated with a high rate of mortality and morbidity. Accurate diagnosis using brain non-contrast computed tomography (NCCT) is crucial for decision-making on potentially life-saving surgery. Limited access to expert readers and inter-observer variability imposes barriers to timeous and accurate ICH diagnosis. We proposed a hybrid deep learning model for automated ICH diagnosis using NCCT images, which comprises a convolutional autoencoder

(CAE) to extract features with reduced data dimensionality and a dense neural network (DNN) for classification. In order to ensure that the model generalizes to new data, we trained it using tenfold cross-validation and holdout methods. Principal component analysis (PCA) based dimensionality reduction and classification is systematically implemented for comparison. The study dataset comprises 1645 ("ICH" class) and 1648 ("Normal" class belongs to patients with non-hemorrhagic stroke) labelled images obtained from 108 patients, who had undergone CT examination on a 64-slice computed tomography scanner at Kalinga Institute of Medical Sciences



between 2020 and 2023. Our developed CAE-DNN hybrid model attained 99.84% accuracy, 99.69% sensitivity, 100% specificity, 100% precision, and 99.84% F1-score, which outperformed the comparator PCA-DNN model as well as the published results in the literature. In addition, using saliency maps, our CAE-DNN model can highlight areas on the images that are closely correlated with regions of ICH, which have been manually contoured by expert readers. The CAE-DNN model demonstrates the proof-of-concept for accurate ICH detection and localization, which can potentially be implemented to prioritize the treatment using NCCT images in clinical settings.

URL: https://link.springer.com/article/10.1007/s11571-025-10259-5





Journal Name: Scientific Reports

IF: 3.8

**Title**: Optimized placement of distributed generators, capacitors, and EV charging stations in reconfigured radial distribution networks using enhanced artificial hummingbird algorithm

Author: Sahay S.; Biswal S.R.; Shankar G.; Jha A.V.; Appasani B.; Srinivasulu A.; Nsengiyumva P.

Details: Volume 15, Issue 1, December, 2025

**Abstract:** This study presents an assessment of concurrently identifying the best location and size of distributed generators (DGs), shunt capacitors (SCs), and electric vehicle charging stations (EVCSs) in optimally reconfigured radial distribution networks (RDNs). A comprehensive literature review indicates that this multi-unit combination has the potential to enhance RDN performance significantly, but it remains an underexplored area of research. Therefore, further in-depth investigation is necessary to understand and fully maximize the benefits of this method. The optimal placement and sizing (OPS) of

the mentioned multi-unit in RDNs is realized by employing a metaheuristic optimization technique subject to the fulfillment of a well-defined fuzzified-objective function comprising of line losses reduction, power factor improvement, voltage deviation reduction, and DG penetration limit. Employing the concept of centroid-based oppositional learning (COL), an improved version of the artificial hummingbird



algorithm (AHA), named COLAHA, is proposed to decipher the adopted issue. The results achieved utilizing the offered approach are matched with those of the additional innovative algorithms such as the basic AHA, arithmetic optimization algorithm, genetic algorithm, and whale optimization algorithm. By evaluating it against several benchmark functions, the effectiveness of the proposed COLAHA is established. The performance of the aforementioned studied algorithms is further tested to find the OPS of DGs, SCs and EVCSs in the standard IEEE 69- and 118-bus RDNs. Results obtained conclude that the COLAHA has offered quick convergence and the best results over the others for all the studied combinations of the multi-unit model.

URL: https://www.nature.com/articles/s41598-025-89089-8





Journal Name: Scientific Reports IF: 3.8

**Title**: Neural network backstepping control of OWC wave energy system

Author: Nath P.; Mishra S.K.; Jha A.V.; Appasani B.; Pati A.K.; Verma V.K.; Nsengiyumva P.; Srinivasulu A.

**Details:** Volume 15, Issue 1, December 2025

**Abstract:** This paper investigates the application of Neural Network Backstepping Control (NN-BSC) for enhancing the rotational speed control of Oscillating Water Column (OWC) wave energy systems. Traditional control methods face limitations when dealing with nonlinearities, irregular wave conditions, and actuator disturbances. To address these challenges, this research paper introduces a Chebyshev NN within the BSC framework, leveraging its high approximation accuracy and computational efficiency. The

design of the NN-BSC involves estimating the disturbance term using the Chebyshev NN and validating the stability OWC control system through Lyapunov analysis. The proposed NN-BSC law effectively handles nonlinearities and improves system robustness under dynamic conditions. Numerical simulations have been conducted using MATLAB/SIMULINK to compare the performance of the uncontrolled OWC system, conventional PI and BSC, and NN-BSC, under scenarios with and without actuator disturbances. The parameters for PI, BSC, and



NN-BSC are optimized using a Particle Swarm Optimization (PSO) algorithm, which minimizes a fitness function defined by the Integral Squared Error (ISE). Results indicate that NN-BSC achieves smoother rotor speed tracking, particularly under actuator disturbances, where the conventional PI and BSC exhibits significant performance degradation in terms of ISE. Under actuator disturbance scenarios: (1) NN-BSC achieved the lowest ISE value of 22.5433, outperforming PI (40.6381) and BSC (37.1192), and (2) NN-BSC demonstrated the lowest maximum peak overshoot (0.9651 rad/s) and fastest settling time (0.0561 s).

URL: https://www.nature.com/articles/s41598-025-87725-x





Journal Name: SLAS Technology IF: 3.7

Title: Bio-inspired computing and Machine learning analytics for future-oriented mental well-

being

Author: C., Chakraborty, Chinmay; B., Unhelkar, Bhuvan; S., Mahmoudi, Said

Details: Volume 34, October 2025

Abstract: This section mainly focuses on attention-driven multimodal fusion systems. It is used

to integrate different biomedical signals e.g. EEG (brain activity), USG (ultrasound imaging), and ECG (heart activity) for improved clinical decision-making. Nour et al. [1] presents a high-performing attention-based deep learning model specifically designed for classifying Motor Imagery brain signals extracted from Electroencephalography data. Mingxia et al. [2] introduces Probiotic fermentation studies. This work examines probiotic fermentation in oil tea crops by utilizing the assessment of tea saponin-



degrading bacteria and the optimization of fermentation conditions using fermented oil tea cake under natural conditions.

URL: https://www.sciencedirect.com/science/article/pii/S2472630325001013?via%3Dihub





Journal Name: IEEE Access IF: 3.6

**Title:** Design of a Compact Dual-Band Right-Hand Circularly Polarized Antenna on Magnetized Ferrite Substrate for L-Band Applications

Author: Bhowmik, W.; Valdes, J.L.; T.; Huitema, L.

Details: Vol. 13, October 2025

**Abstract:** This article presents the design of a dual-band right-hand circularly polarized microstrip patch antenna on a magnetized ferrite substrate for L-band (1 GHz - 2 GHz)

applications. The magnetization of the ferrite material enables the antenna to resonate with counter-rotating modes at successive multiband frequencies. In this paper, a unique structure consisting of two stacked ferrite substrates with two different internal DC magnetic fields is used to obtain identical circular polarization modes at two relatively close operating frequencies. In addition, the use of a ferrite material means that the overall dimensions of the antenna can be



reduced to around  $\lambda_0/9.4 \times \lambda_0/9.4 \times \lambda_0/23$  at 1.227 GHz thanks to the high permittivity and high effective permeability of this kind of materials. The antenna exhibits only right-hand circular polarization (RHCP) with good axial ratio (AR) at 1.227 GHz and 1.575 GHz within the L-band. The antenna performed well in both simulations and measurements.

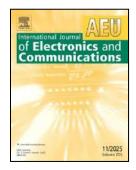
**URL:** https://ieeexplore.ieee.org/document/11205351





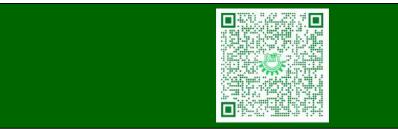
Journal Name: AEU - International Journal of Electronics and Communications

IF: 3.2


**Title:** Active metasurface based transmittive and reflective type reconfigurable multifunctional polarization converter

Author: N.K., Panda, Niten Kumar; S., Sahu, Sudhakar; S., Mohapatra, Sraddhanjali

Details: Volume202, December 2025


**Abstract:** A multifunctional P-I-N diode based frequency reconfigurable metasurface polarizer (RMSP) with transmittive and reflective modes is proposed. This RMSP is able to transform linear polarization (LP) electromagnetic (EM) waves to circular-polarization (CP) and cross-

polarization (CLP) waves in C, X and Ku bands. Without a metal backing, the RMSP is considered as transmittive type having only reflection mode where a dual band LP-CLP conversion occurs within the frequency ranges 7.79 to 11.02 GHz and 8.12 to 11.21 GHz for off and on condition of P-I-N diode. This metal backed RMSP is converted to reflective type which has ability to convert LP-CP and LP-CLP. Less than 3 dB axial ratio (AR) is observed within 7.26 to 13.76 GHz. The polarization conversion and its handedness is explained using the magneto-electric (ME) dipole concept. The conversion process is verified by the surface current as well as the



transfer matrix technique. A fabricated prototype of RMSP is tested for normal incidence which shows almost similar AR response for the transverse-magnetic (TM) and electric (TE) modes. This polarizer has potential applications in sensing polarization variation and reducing radar cross-section (RCS). Generation of simultaneous right and left CP waves by this polarizer is also useful for communication.

URL: https://www.sciencedirect.com/science/article/pii/S1434841125003620?via%3Dihub





Journal Name: Micro and Nanostructures

IF: 3.0

**Title:** Investigation of electrolyte gated negative capacitance vertical TFET pH sensor based on biomolecule position

**Author:** N., Yarlagadda, Nagalakshmi; G., Wadhwa, Girish; P., Kaur, Pawandeep; A., Thakur, Anchal; S.S., Singh, Sruti Suvadarsini; P., Mani, Prashant

Details: Vol. 207, November 2025

**Abstract:** n this study, a step gate Negative capacitance Vertical TFET (SG NC VTFET) has been proposed and investigated for its improved performance. The ferroelectric material has been

added to the gate stack for the inclusion of negative capacitance. The position of biomolecules and their impact on the sensitivity of the SG NC VTFET have been examined. The position of biomolecules changes due to the diffusion process inside the cavity. The ferroelectric material HFO2 has been modelled to be considered in the simulation of the SG NC VTFET pH sensor. The impact of negative capacitance and the position of biomolecules improve the current  $(S_{ID})$  and voltage sensitivity  $(S_V)$  of the SG NC VTFET pH sensor. The improved voltage sensitivity  $(S_V)$  is approximately



equal to 753 mV/pH for = 8 nm, which is ten times more than the Nernstian limit (59.2 mV/pH), and  $S_{ID}$  has been enhanced by approximately half a decade per pH variation.

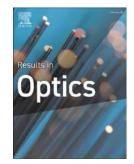
URL: https://www.sciencedirect.com/science/article/pii/S2773012325002158?via%3Dihub





**Journal Name: Results in Optics** 

IF: 3.0


**Title:** Absorption bandwidth enhancement technique using stacked unequal cross-shaped graphene absorber

Author: Mohsen Daraei O.; Rezaei P.; Khatami S.A.; Zamzam P.; Mohapatra S.; Appasani B.; Khani S.

Details: Vol. 21, December 2025

**Abstract:** Terahertz metamaterial absorbers (TMAs) are gaining considerable attention due to their unique characteristics. Graphene-based absorbers are a subclass of TMAs that exhibit tunable absorption characteristics for myriad applications. This paper proposes a TMA

consisting of two layers of graphene in a cross-shaped structure where the absorption can be modified by altering the chemical potential of the graphene layers. A quarter-wave impedance transformer has been utilized to attain optimal absorption in the vicinity of the central frequency of this absorber. Also, the transmission line theory has been considered to verify the absorption level achieved around the central frequency. The conductivity of the graphene layer is changed by altering the levels of chemical potential; the Fermi levels for the upper and lower layers of the



graphene cross-shaped THz absorber have been considered 1 eV and 0.3 eV, respectively, to achieve maximum absorption. Therefore, the bandwidth of this absorber reached 1.74 THz, around 7 THz as the central frequency. The proposed asymmetric stacked graphene structure provides broadband, polarization-insensitive, and electrically tunable absorption around 7 THz, making it highly suitable for applications such as THz imaging, sensing, and electromagnetic signature reduction technologies. Compared to prior designs, it offers improved bandwidth, tunability, and angular stability, making it a compact and practical solution for next-generation terahertz systems.

**URL:** https://www.sciencedirect.com/science/article/pii/S2666950125001002?via%3Dihub

